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a b s t r a c t

This paper deals with cooperation situations in linear production problems in which a set of goods are to
be produced from a set of resources so that a certain benefit function is maximized, assuming that
resources not used in the production plan have no value by themselves. The Owen set is a well-known
solution rule for the class of linear production processes. Despite their stability properties, Owen alloca-
tions might give null payoff to players that are necessary for optimal production plans. This paper shows
that, in general, the aforementioned drawback cannot be avoided allowing only allocations within the
core of the cooperative game associated to the original linear production process, and therefore a new
solution set named EOwen is introduced. For any player whose resources are needed in at least one opti-
mal production plan, the EOwen set contains at least one allocation that assigns a strictly positive payoff
to such player.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction allocation rules is the Shapley value, which has attracted a lot of
A benefit cooperative game is a pair (N,v), where N = {1,2, . . . ,n}
is the set of players and v : 2N ! R is the characteristic function
assigning to every coalition S � N the maximum benefit that the
cooperation between players in S would yield. For a complete
introduction on cooperative game theory see for instance Owen
(1995) or Forgó et al. (1999). Assuming that the game is superad-
ditive, that is v(S) + v(T) 6 v(S [ T), "S,T � N, cooperation among
all players is beneficial and, therefore, the grand coalition N is to
form.

One of the main questions in cooperative game theory is how to
distribute the benefit obtained by the grand coalition N among the
players. An allocation is a vector a 2 Rn, such that ai is the payoff of
player i and

Pn
i¼1ai ¼ vðNÞ. One well-accepted way of allocating

v(N) among the players is to find allocations in the core. The core
of a game (N,v), denoted by Core(N,v), is the set of allocations sat-
isfying that no coalition of players can obtain a better payoff by
acting separately from the rest of players. That is,

CoreðN;vÞ ¼ fa 2 Rn : vðSÞ 6 aðSÞ 8S � N; vðNÞ ¼ aðNÞg; ð1Þ

where aðSÞ ¼
P

i2Sai; 8S � N. In principle, the core has at least two
problems: the core of a game might be empty, that is, there are
games for which no core allocations exist, and finding a core alloca-
tion might be a NP-hard problem. Along the years, many other allo-
cation rules have appeared in the literature. One of the most used
ll rights reserved.
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interest for its many applications, see Moretti and Patrone (2008).
A linear production problem is a situation in which certain

goods that can be sold in a market are to be produced from a set
of available distinct resources. An implicit feature of the linear pro-
duction problems we deal with in this paper is that the resources
not used in the production plan have no value at all. Situations like
this may arise when the resources are perishable and, if not used in
the next production plan, they are wasted. Another example of this
situation is found in some industries in developed countries that
give their excesses to underdeveloped countries, to charity organi-
zations, or even to other companies within the same area as long as
they are not competing ones. This is beneficial for both parties: the
donor party gets rid of excesses which, if not used, must be elimi-
nated at certain cost, and the receiving party only has to pay for the
shipping costs, which is usually cheaper than having to buy the
material.

In this paper we study a new set of allocations for linear produc-
tion processes (LP processes for short), which arise when a bunch of
players N = {1, . . . ,n} with conflicting objectives control the re-
sources of a LP problem. A cooperative game, called LP game, can
be associated to each LP process. (Note that different LP processes
may generate the same LP game.) An early reference to LP games
can be found in Owen (1975). LP games are totally balanced games,
so every subgame of a LP game has a non-empty core. By solving
the dual problem of the underlying linear production problem
we can obtain a set of allocations for LP processes known as Owen
allocations (see Owen (1975)), which has been well-studied in the
literature. One of its main properties is that Owen allocations are
always core allocations, and are easily computed. More recently,
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Van Gellekom et al. (2000) provided an axiomatic characterization
of this solution set. In this paper we show that, despite their stabil-
ity properties, Owen allocations do not always yield a fair distribu-
tion of the benefit obtained. For instance, a player whose resources
are necessary for any optimal plan may receive a null payoff from
Owen allocations. Such drawback is discussed in this paper, and an
alternative allocation set is proposed.

Since the pioneering work by Owen, several generalizations of
LP games have appeared in the literature. Dubey and Shapley
(1984) study a game in which players have partial control over
the constraints of a general mathematical programming problem.
Granot (1986) introduces another generalization in which the re-
sources owned by a coalition are not restricted to be the sum of
the resources of players in the coalition. Curiel et al. (1989) intro-
duce LP games with committee control, obtaining results on the
balancedness of these games, whose core has been more recently
studied by Molina and Tejada (2004).

The goal of this paper is to introduce a new set of allocations for
linear production processes that avoid some of the aforementioned
drawbacks of the Owen set. To this end, the rest of the paper is
structured as follows. Section 2 gives a short introduction to LP
processes and a motivation of the studied problem. Some
definitions and technical results are given in Section 3. The alloca-
tion set proposed in this paper is introduced and analyzed in
Section 4. An axiomatic characterization and some of its properties
are given, as well as a discussion about the impossibility of finding
core allocations that avoid the unfairness problem of the Owen
allocations we address in this paper.

2. Linear production processes

A LP problem is a situation in which there is a finite set of
resources R = {1,2, . . . ,r} and from those resources a set P =
{1,2, . . . ,p} of consumption goods can be produced. The production
technologies are given by a matrix A 2 Rr�p, where Aij P 0 denotes
the amount of resource i necessary to produce one unit of product
j, "i = 1, . . . ,r, j = 1, . . . ,p. It is also assumed that the demand of
every product is large enough to sell all produced products, the
unitary market price of product j being cj P 0. The objective of a
LP problem is to decide how much of each product should be pro-
duced so that the general benefit is maximized.

Assume now that a group of players N = {1, . . . ,n} control the re-
sources R = {1,2, . . . ,r}, that is, player k owns Bik P 0 units of re-
source i,k = 1, . . . ,n, i = 1, . . . ,r. Therefore, let B = (Bik)r�n be the
resource-player matrix. Let b 2 Rr be the resource vector, that is
b = BeN, where eS 2 Rn satisfying (eS)k = 1 if k 2 S, and zero other-
wise for all S # N. In other words, bi is the total amount of resource
i owned by the grand coalition, that is, bi ¼

Pn
k¼1Bik 8i 2 R. Thus,

the maximum profit that can be made by the cooperation of all
players is the value of problem PN:

max cx

s:t: Ax 6 b

x P 0
ðPNÞ;

min yb

s:t: yA P c

y P 0
ðDNÞ; ð2Þ

where DN is the dual problem of PN (see Bazaraa et al. (1990) for a
description of duality theory in linear programming). It is easy to
check that, although players can try to produce separately, it is al-
ways more profitable to join their resources since the benefit they
obtain this way is at least as high as the sum of the possible coali-
tions’ profits separately. For a coalition S � N, we define its charac-
teristic function, v(S), via the optimal value of problem PS:

max cx
s:t: Ax 6 BeS

x P 0
ðPSÞ;

min yBeS

s:t: yA P c

y P 0
ðDSÞ; ð3Þ
where DS is the dual of PS.
Problem PS is feasible and bounded for all possible coalitions if

BeS > 0, c P 0 and "j: cj > 0 there is at least one resource i 2 R with
Aij > 0.

Each triple (A,B,c) satisfying the conditions above will be called
in the following, according to Van Gellekom et al. (2000), a linear
production process. Let L denote the class of LP processes. From
the definition of the characteristic function v one can associate to
each LP process a cooperative game (N,v). The reader may note that
the same LP game can originate from different LP processes.

Now a natural question arises: how to divide the profit made by
the grand coalition among the players. Let us introduce some nota-
tion that will be useful in the rest of the paper.

Let ðA;B; cÞ 2 L. The feasible regions of problems PN and DN, see
(2), are denoted by

FmaxðA;B; cÞ :¼ fx 2 Rp
þ : Ax 6 bg;

FminðA;B; cÞ :¼ fy 2 Rn
þ : yA P cg;

ð4Þ

respectively. The optimal values of problems PN and DN are
denoted by

vmaxðA;B; cÞ :¼maxfcx : x 2 FmaxðA;B; cÞg;
vminðA;B; cÞ :¼minfyb : y 2 FminðA;B; cÞg;

ð5Þ

respectively, and the set of optimal solutions to PN and DN by

OmaxðA;B; cÞ :¼ fx 2 FmaxðA;B; cÞ : cx ¼ vmaxðA;B; cÞg;
OminðA;B; cÞ :¼ fy 2 FminðA;B; cÞ : yb ¼ vminðA;B; cÞg:

ð6Þ

A solution rule u on L is a map assigning to every LP process
ðA;B; cÞ 2 L a set C � Rn such that

P
i2Nci ¼ vmaxðA;B; cÞ for all

c 2 C. Each member of this set is an allocation. A well-known solu-
tion rule for cooperative games is the core, see (1). One well-
accepted solution rule specific for LP processes is the Owen set,
defined from optimal solutions to the dual problem DN.

Definition 1. Let ðA;B; cÞ 2 L. The Owen set of (A,B,c) is

OwenðA;B; cÞ :¼ fyB : y 2 OminðA;B; cÞg: ð7Þ

Owen (1975) proved that Owen(A,B,c) # Core(A,B,c) for every
ðA;B; cÞ 2 L. That is, Owen allocations are stable in the sense that
no group of players can obtain a better payoff by acting separately.
Despite these good properties, they should not be considered as
ideal allocations. See the following example.
Example 1. Consider the 3-player game ðA;B; cÞ 2 L where

A ¼

1 0
1 1
0 1
1 2

0
BBB@

1
CCCA; B ¼

1 0 1
0 4 0
1 0 0
0 5 0

0
BBB@

1
CCCA; c ¼

1
2

� �
:

The corresponding dual problem D(N) is

min 2y1 þ 4y2 þ y3 þ 5y4

s:t: y1 þ y2 þ y4 P 1;
y2 þ y3 þ 2y4 P 2;
y1; y2; y3; y4 P 0:

ð8Þ

The characteristic function of the associated game is v({i}) =
v({1,3}) = 0 "i = 1,2,3, v({1,2}) = 3, v({2,3}) = 1, v({1,2,3}) = 4. It
can be checked that Omin(A,B,c) = {(1,0,2,0)} and, therefore,
Owen(A,B,c) = {(1,0,2,0)B} = {(3,0,1)}.

This allocation is in the core of the game but, is it a ‘‘fair’’
allocation? Note that player 2 receives nothing but, without his
resources, the optimal production plan cannot be achieved. So, the
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Owen allocation gives a null payoff to a player whose resources are
necessary for the optimal production plan.
What happened in Example 1 is a general drawback of the
Owen set in LP processes. This is a consequence of the complemen-
tary slackness theorem, see Bazaraa et al. (1990), which says that if
there is some surplus of resource i in an optimal solution x⁄ 2
Omax(A,B,c) (meaning (Ax⁄)i < bi), then y�i ¼ 0 8y� 2 OminðA;B; cÞ.
This condition for optimality conveys a simple economic principle:
if there is a positive slack in a constrained primal resource, i.e.
there are leftovers, then the additional quantities of that resource
must have no value (shadow prices are zero). This means that only
players owning resources that generate no surplus have the chance
of receiving a strictly positive payoff from Owen allocations, which
are based on shadow prices. This fact could make players get rid of
their surpluses so that the corresponding dual variables are not
forced to be null, so they have the possibility of receiving a positive
reward from allocations obtained from dual solutions.

The following section presents a new solution rule on LP pro-
cesses that avoids the drawback previously discussed. It is based
on the idea that the surpluses of resources should not be taken into
account. Therefore players owning leftovers of resources in an opti-
mal production plan are allowed to get rid of them at no cost, nor
benefit, and play a new reduced game. A similar approach was used
to allocate the benefits obtained in a distribution model, see Perea
et al. (2009). Another example of an allocation trying to avoid
unfairness can be found in Çiftçi and Tijs (2009), who give some
rules for minimum spanning tree games.

3. Technical results and definitions

In this section we introduce some technical results and defini-
tions that will be useful for presenting our new solution rule. First,
the concept of intermediate matrix will be needed in the rest of the
paper. Let M, M1, M2 be three matrices in Rr�n. We say that

M 2 ½M1;M2� if and only if M1
ik 6 Mik 6 M2

ik 8i ¼ 1; . . . ; r;

k ¼ 1; . . . ;n: ð9Þ

Let ðA;B; cÞ 2 L and x⁄ 2 Omax(A,B,c) one solution to the corre-
sponding problem PN. The coordinates of x⁄ define the amount of
consumption goods to be produced. Now consider the LP process
in which each player k reduces the amount of its resource i so that
the total amount of this resource owned by all agents is ðAx�Þi :¼Pp

j¼1Aijx�j ; 8i ¼ 1; . . . ; r.
Therefore, for any optimal solution x⁄, let Bx�

ik be the updated
amount of resource i owned by agent k, satisfying that 0 6
Bx�

ik 6 Bik and
Pn

k¼1Bx�

ik ¼ ðAx�Þi, that is, player k gets rid of Bik�
Bx�

ik P 0 units of resource i, "i = 1, . . . ,r, k = 1, . . . ,n. Since there
might be (infinitely) many ways of finding matrices satisfying
these constraints, we make use of the set constituted by of all of
them.

Given a LP process (A,B,c) and x⁄ 2 Omax(A,B,c), the set of all pos-
sible reduced resource-player matrices of (A,B,c) associated to x⁄ is

BðA;B; x�Þ ¼ fBx� 2 ½H;B� :
Xn

k¼1

Bx�

ik ¼ ðAx�Þi; 8i 2 Rg; ð10Þ

where H denotes the matrix with the appropriate dimensions and
all entries equal to zero.

Define the vector bx� 2 Rr , where bx�

i ¼ ðAx�Þi; 8i 2 R. Note that
bx�

i ¼
Pn

k¼1Bx�

ik for all Bx� 2 BðA;B; x�Þ. So, for every x⁄ 2 Omax(A,B,c)
and Bx� 2 BðA;B; x�Þ a new LP process ðA;Bx� ; cÞ 2 L is defined. Its
corresponding problems PSðBx� Þ and DSðBx� Þ are:

max cx

s:t: Ax 6 Bx�eS

x P 0
PSðBx� Þ;

min yBx�eS

s:t: yA P c

y P 0:

DSðBx� Þ: ð11Þ
Remark 1. Note that PNðBx� Þ and DNðBx� Þ only depend on x⁄, and
not on the chosen reduced matrix. Therefore, once x⁄ 2 Omax(A,B,c)
is fixed, both OmaxðA;Bx� ; cÞ and OminðA;Bx� ; cÞ are constant for any
Bx� 2 BðA;B; x�Þ.

The above property leads us to the definition of reduced LP
process.

Definition 2. ðA;Bx� ; cÞ is a reduced LP process of (A,B,c) associated
to Bx� , for every x⁄ 2 Omax(A,B,c) and every Bx� 2 BðA;B; x�Þ.

The next lemma gives some properties on the value of problems
PN and DN and their solution sets, needed for the rest of the paper.

Lemma 1. Let ðA;B; cÞ 2 L. Then

1. vmaxðA;B;cÞ ¼ vmaxðA;Bx� ;cÞ 8x� 2OmaxðA;B;cÞ; 8Bx� 2 BðA;B;x�Þ.
2. vminðA;B;cÞ ¼ vminðA;Bx� ;cÞ 8x� 2OmaxðA;B;cÞ; 8Bx� 2 BðA;B;x�Þ.
3. OmaxðA;B; cÞ ¼

[ [
OmaxðA;Bx� ; cÞ
x�2OmaxðA;B;cÞ Bx� 2BðA;B;x�Þ

¼
[

x�2OmaxðA;B;cÞ

\
Bx� 2BðA;B;x�Þ

OmaxðA;Bx� ; cÞ:

\ [
x�
4. OminðA;B; cÞ# OminðA;B ; cÞ
x�2OmaxðA;B;cÞ Bx� 2BðA;B;x�Þ

¼
\

x�2OmaxðA;B;cÞ

\
Bx� 2BðA;B;x�Þ

OminðA;Bx� ; cÞ:
Proof

1. It follows because x⁄ is a solution to PNðBx� Þ 8x� 2
OmaxðA;B; cÞ; 8Bx� 2 BðA;B; x�Þ.

2. The result follows from part 1 of Lemma 1 and the strong dual-
ity theorem in linear programming (vmax = vmin).

3. First consider x̂ 2 OmaxðA;B; cÞ and Bx̂ 2 BðA;B; x̂Þ. Trivially
x̂ 2 OmaxðA;Bx̂; cÞ. Then
x̂ 2
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x̂Þ

OmaxðA;Bx� ; cÞ: ð12Þ
Now consider x̂ 2
S

x�2OmaxðA;B;cÞ
S

Bx� 2BðA;B;x̂ÞOmaxðA; Bx� ; cÞ. Then, there
exists x⁄ 2 Omax(A,B,c) and Bx� 2 BðA;B; x�Þ such that x̂ 2
OmaxðA;Bx� ; cÞ. Thus
Ax̂ 6 bx� ¼ Ax� 6 b

x̂ P 0
cx̂ ¼ vmaxðA;Bx� ; cÞ ¼ vmaxðA;B; cÞ

9>=
>;) x̂ 2 OmaxðA;B; cÞ:

ð13Þ
Since Omax(A,B1,c) = Omax(A,B2,c) for all B1;B2 2 BðA;B; x̂Þ (see
Remark 1), the result is proven joining (12) and (13).
4. Let ŷ 2 OminðA;B; cÞ and x̂ 2 OmaxðA;B; cÞ. Applying the comple-

mentary slackness theorem and the strong duality theorem in
linear programming, we have that ŷi ¼ 0 for all i such that
ðAx̂Þi < bi, and if ðAx̂Þi ¼ bi then bi ¼ bx̂

i . Therefore
ŷb ¼
Xn

i¼1

ŷibi ¼
X

i:ðAx̂Þi¼bi

ŷibi ¼
X

i:ðAx̂Þi¼bi

ŷib
x̂
i ¼

Xn

i¼1

ŷib
x̂
i ¼ ŷbx̂

:

Thus, for each Bx̂ 2 BðA; B; x̂Þ
ŷbx̂ ¼ ŷb ¼ cx̂ ¼ vmaxðA;B; cÞ ¼ vmaxðA;Bx̂; cÞ ¼ vminðA;Bx̂; cÞ:
ð14Þ
Trivially ŷ 2 FminðA;Bx̂; cÞ, since problems DN and DNðBx̂Þ have the
same constraints. Thus, we conclude that ŷ 2 OminðA; Bx̂; cÞ and the
result follows from Remark 1. h
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Note that, if x⁄ 2 Omax(A,B,c) and Bx� 2 BðA;B; x�Þ, then x⁄ 2
O max(A,B0,c) for all B0 2 ½Bx� ;B�. The next lemma states that the set
of reduced matrices of such B0 is contained in that of B.

Lemma 2. Let x⁄ 2 Omax (A,B,c), and let B0 2 ½Bx� ;B� for some
Bx� 2 BðA;B; x�Þ. Then BðA;B0; x�Þ#BðA;B; x�Þ.
Proof. Under the hypotheses in the statement, let eB 2 BðA;B0; x�Þ.
Since eB 2 ½H;B0�# ½H;B�, and using (10), it is easy to see thateB 2 BðA;B; x�Þ. h
4. The Extended Owen set

In this section a new solution rule for the class of LP processes
is presented. It is based on the idea of not taking into account
the surplus generated by optimal solutions to the primal linear
programming problem defining the value of v(N). Therefore, we
first have to find out how much the amount of resources can
be reduced while the maximum profit is unchanged. The follow-
ing lemma gives a hint to answer this question and states that, in
linear production processes with only one optimal production
plan, the minimum amount of resources needed to generate
the maximum profit must be bounded from above by bx� , where
{x⁄} = Omax(A,B,c).

Lemma 3. Let ðA;B; cÞ 2 L such that {x⁄} = Omax(A,B,c). Let bx� ¼ Ax�.
Let b0 2 Rn be such that b0 6 bx� . Then, the maximum values of
problems P and P0 coincide if and only if b0 ¼ bx� , where P and P0 are
defined by

max cx

s:t: Ax 6 b

x P 0
ðPÞ;

max cx

s:t: Ax 6 b0

x P 0
ðP0Þ:
Proof. Let (A,B,c) and b0 be a LP process and a vector satisfying the
conditions of the theorem, respectively. By contradiction, assume
that there exists x0 P 0: Ax0 6 b0,cx0 = cx⁄ with b0 < b. One has that
x0 – x⁄, since there exists j such that Aj�x0 6 b0j < bx�

j ¼ Aj�x�. Since
b0 6 b, one has that x0 is an optimal feasible solution to problem
(P). Since we had assumed that there was only one solution to
problem (P), and cx0 = cx⁄, the contradiction appears and the result
is proven. h

Note that, in the more general case with multiple optimal pro-
duction plans, we have that the vector b0 of the previous lemma is
dominated by all the resource vectors associated to optimal pro-
duction plans, that is, b0 P bx� 8x� 2 OmaxðA;B; cÞ. This can be easily
proven adapting the result of Proposition 4.1 in Perea et al. (2009).

Based on this idea, the definition of the EOwen set follows:

Definition 3. Let ðA;B; cÞ 2 L. The Extended Owen set of (A,B,c) is
the set

EOwenðA;B; cÞ ¼
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x�Þ

OwenðA;Bx�; cÞ: ð15Þ
Remark 2. The reader may note that, although OminðA;Bx�; cÞ is
independent of the choice of matrix Bx� , once x⁄ has been chosen
(see Remark 1); OwenðA; Bx� ; cÞ does not necessarily have a similar
property.

In order to start gaining insights into this new solution rule, we
present the following result, which states that the more matrix B is
reduced without lowering Bx� , the larger the Owen set of the corre-
sponding LP process.
Proposition 1. Let bB 2 ½Bx�;B� for some reduced matrix Bx� associated
to an optimal production plan x⁄. Then we have that:

OwenðA;B; cÞ# OwenðA; bB; cÞ# OwenðA;Bx�; cÞ:
Proof. Let a 2 OwenðA;B; cÞ ) 9�y 2 OminðA;B; cÞ : a ¼ �yB. Let us see
that �y 2 OminðA; bB; cÞ.
min yb

s:t: yA P c

y P 0

ðDÞ;
min yb̂

s:t: yA P c

y P 0

ðbDÞ:

Since �y 2 OminðA;B; cÞ, by definition one has that �y is optimal for
problem D. Therefore, �y is feasible for problem bD. Besides, as we
proved in Lemma 1, part 4, �yb ¼ �yb̂. Thus �y 2 OminðA; bB; cÞ. Applying
again the complementary slackness theorem, one has that:

ak ¼
Xn

i¼1

�yiBik ¼
X

i:�yi – 0

�yiBik ¼
X

i:�yi – 0

�yi
bBik ) a ¼ �ybB:

Therefore we have proven that a 2 OwenðA; bB; cÞ, and as a conse-
quence OwenðA;B; cÞ# OwenðA; bB; cÞ. OwenðA; bB; cÞ# OwenðA; Bx� ; cÞ
can be proven analogously. h

An immediate corollary to the previous result states that the
name Extended Owen set is meaningful, as EOwen contains the
Owen set.

Corollary 1. Owen(A,B,c) # EOwen(A,B,c) for all ðA; B; cÞ 2 L.

The following example proves that the inclusions in Proposition
1 and Corollary 1 may be strict.

Example 2. Take the LP process from Example 1. One can see that
Omax(A,B,c) = {x⁄ = (2,1)}. Therefore, Bx� (in this case unique) and a

choice of bB are:

Bx� ¼

1 0 1

0 3 0

1 0 0

0 4 0

0
BBBB@

1
CCCCA; bB ¼

1 0 1

0 3 0

1 0 0

0 5 0

0
BBBB@

1
CCCCA:

Then, we obtain that problem DNðBx� Þ and that corresponding tobB;DNðbBÞ, are, respectively:

min 2y1 þ 3y2 þ y3 þ 4y4

s:t: y1 þ y2 þ y4 P 1

y2 þ y3 þ 2y4 P 2

y1; y2; y3; y4 P 0

DNðBx� Þ;

min 2y1 þ 3y2 þ y3 þ 5y4

s:t: y1 þ y2 þ y4 P 1

y2 þ y3 þ 2y4 P 2

y1; y2; y3; y4 P 0

DNðbBÞ:
ð16Þ

From the solutions to these problems, which are the convex hulls of
{(1,0,2,0), (0,1,1,0), (0,0,0,1)} and {(1,0,2,0), (0,1,1,0)}, respec-
tively, one can see that OwenðA;Bx� ; cÞ (which in this example coin-
cides with EOwen(A,B,c)) is the convex hull of {(3,0,1), (1,3,0),
(0,4,0)} and OwenðA; bB; cÞ is the convex hull of {(3,0,1), (1,3,0)}.
This way we prove that the relations described in Proposition 1
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are strict. Besides, note that there are allocations in EOwen(A,B,c)
that give player 2 a strictly positive payoff, unlike Owen(A,B,c). Note
as well that EOwen(A,B,c) � Core(A,B,c).

From their definitions, it is easy to prove that for reduced LP
processes, as introduced in Definition 2, the EOwen set and the
Owen set coincide. Analogously, one can state that in LP processes
where all the resources are completely used, the EOwen set
coincides with the Owen set.

The following proposition proves that allocations in the EOwen
set distribute exactly v(N) among the players.
Proposition 2. Let ðA;B; cÞ 2 L and let c 2 EOwen(A,B,c). Then c is
efficient.
Proof. Let c 2 EOwen(A,B,c). Then there exists x� 2 OmaxðA;B; cÞ;
Bx� 2 BðA;B; x�Þ and ŷ 2 OminðA;Bx� ; cÞ such that ck ¼

Pr
i¼1ŷiB

x�

ik

8k ¼ 1; . . . ;n. Therefore
cðNÞ ¼
Xn

k¼1

ck ¼
Xn

k¼1

Xr

i¼1

ŷiB
x�

ik ¼
Xr

i¼1

ŷi

Xn

k¼1

Bx�

ik ¼
Xr

i¼1

ŷib
x�

i ¼ ŷbx�
:

ð17Þ

Since ŷ 2 OminðA;Bx� ; cÞ and x⁄ 2 Omax(A,B,c), we know that ŷbx� ¼
cx� ¼ vðNÞ. This concludes that c(N) = v(N). h

Another interesting property states that, for all players whose
resources are necessary to produce the maximum benefit v(N) in
some optimal production plan, there exists an allocation in EOwen
that assigns them a strictly positive payoff.

Theorem 1. Let ðA;B; cÞ 2 L and x⁄ 2 Omax(A,B, c), and let k 2 N be a
player such that some of the resources that he owns are needed for the
optimal production plan x⁄ to be developed. Then there exists a 2
EOwen(A,B,c) such that ak > 0.
Proof. Let x⁄ 2 Omax(A,B,c), and Bx� 2 BðA;B; x�Þ. By the strict com-
plementary slackness theorem, if the slack in the ith constraint of
problem PNðBx� Þ is zero, then there exists a solution y to DNðBx� Þ
such that yi > 0 (see Theorem 10.7 in Vanderbei (1997)). Assuming
that the units of the ith resource owned by player k are needed for
the optimal production plan x⁄, it is easy to see that Bx�

ik > 0. Then,
the payoff of player k from the EOwen allocation aBx� ¼ yBx� is, at
least, yiB

x�

ik > 0. h

Note that this proposition allows us to state that the EOwen
set always overcomes the unfairness problem illustrated in
Example 1.

Let us now introduce the property of upper limit inclusion (ULI),
which will be useful for our characterization of EOwen.

Property 1 (ULI). A solution rule u satisfies ULI if for every
ðA;B; cÞ 2 L, every x⁄ 2 Omax (A,B,c), and every matrix B0 such that
B0 2 ½Bx� ;B� for every Bx� 2 BðA;B; x�Þ, we have that u(A,B0, c) #

u(A,B,c).
The following result proves that EOwen satisfies this property.

Proposition 3. EOwen satisfies ULI.
Proof. Let ðA;B; cÞ 2 L. Consider x⁄ 2 Omax(A,B,c), and let B0 2
½Bx� ;B� for every Bx� reduced matrix associated to x⁄. Similarly as
we proved in Proposition 1, it can be seen that Omax(A,B0,c) #

Omax(A,B,c). Besides, since we proved in Lemma 2 that
BðA;B; x�Þ � BðA;B0; x�Þ, we have
EOwenðA;B; cÞ ¼
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x�Þ

OwenðA;Bx� ; cÞ

�
[

x�2OmaxðA;B0 ;cÞ

[
Bx� 2BðA;B;x�Þ

OwenðA;Bx� ; cÞ

�
[

x�2OmaxðA;B0 ;cÞ

[
Bx� 2BðA;B0 ;x�Þ

OwenðA;Bx� ; cÞ

¼ EOwenðA;B0; cÞ: �

Now we are ready to give a characterization of the EOwen solu-
tion rule for linear production processes.
Theorem 2. Let u be a solution rule over L. u satisfies ULI, coincides
with the Owen set over LP processes without leftovers and is minimal
if and only if u 	 EOwen.
Proof

� Clearly EOwen coincides with the Owen set in LP processes with-
out leftovers, and as proven in Proposition 3, EOwen satisfies
ULI. Let us see that EOwen is minimal. For this purpose, let u
be a solution set that coincides with the Owen set in LP pro-
cesses without leftovers and satisfies ULI, and let ðA;B; cÞ 2 L.
Therefore, OwenðA;Bx� ; cÞ ¼ uðA;Bx� ; cÞ# uðA;B; cÞ for all
x⁄ 2 Omax(A,B,c) and all Bx� 2 BðA;B; x�Þ. Hence
EOwenðA;B; cÞ ¼
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x�Þ

OwenðA;Bx� ; cÞ

¼
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x�Þ

uðA;Bx� ; cÞ

# uðA;B; cÞ;
which proves that EOwen is minimal.
� Let u be a solution rule over L satisfying the hypotheses of the

theorem. Therefore uðA;Bx� ;cÞ ¼OwenðA;Bx� ;cÞ 8x� 2OmaxðA;B;cÞ
and for every Bx� 2 BðA;B;x�Þ, because ðA;Bx� ;cÞ has no leftovers.
Now, since u satisfies ULI we have that uðA;Bx� ;cÞ#uðA;B;cÞ,
therefore
EOwenðA;B; cÞ ¼
[

x�2OmaxðA;B;cÞ

[
Bx� 2BðA;B;x�Þ

uðA;Bx� ; cÞ# uðA;B; cÞ:
From the minimality of u, and since EOwen satisfies the hypotheses
of the theorem, u(A,B,c) # EOwen(A,B,c). Thus, EOwen(A,B,c) =
u(A,B,c). h

Let us now introduce the following increasing monotonicity (IM)
property that will lead us to another characterization of EOwen set:

Property 2 (IM). A solution rule u satisfies IM if for every
ðA;B; cÞ 2 L, every x⁄ 2 Omax (A,B, c), and every B1, B2 such that
B1 2 ½Bx� ;B� for each Bx� 2 BðA;B; x�Þ and B2 2 [B1, B], we have that
u(A, B1,c) # u(A,B2, c).

The following result states that increasing monotonicity is
equivalent to upper limit inclusion.

Lemma 4. Let u be a solution rule over L. Then u satisfies ULI if and
only if u satisfies IM.
Proof. Trivially, if u satisfies IM then it satisfies ULI too. Con-
versely, let ðA;B; cÞ 2 L, and x⁄ 2 Omax(A,B,c). Moreover, let
B1 2 ½Bx� ;B� for each Bx� 2 BðA;B; x�Þ and B2 2 [B1,B]. It is straightfor-
ward that x⁄ 2 Omax(A,B2,c). Then, since B1 2 ½Bx� ;B2� and u satisfies
IM, we have that u(A,B1,c) # u(A,B2,c), which concludes the
proof. h
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From the equivalency between increasing monotonicity and
upper limit inclusion, the following alternative characterization
of EOwen trivially follows from Theorem 2.

Corollary 2. Let u be a solution rule over L. u satisfies IM, coincides
with the Owen set over LP processes without leftovers and is minimal
if and only if u 	 EOwen.

We finish this section by studying the relation between EOwen,
the Owen set, and the core of the original game. It is obvious that
CoreðA;B; cÞ# CoreðA;Bx�; cÞ for every optimal production plan x⁄

and every reduced matrix Bx� associated to it, since vBx� ðSÞ 6 vðSÞ
and vBx� ðNÞ ¼ vðNÞ, where vBx�

denotes the characteristic function
of the corresponding reduced game. The following example shows
that this relation may be strict.

Example 3. Consider the LP process (A,B,c) where

A ¼
1 0
1 1
0 1

0
B@

1
CA; B ¼

1 0
1 3
1 0

0
B@

1
CA; c ¼

2
1

� �
:

It can be seen that Omax(A,B,c) = {x⁄ = (1,1)}, and the characteristic
function of the associated game is v({1}) = 2, v({2}) = 0,
v({1,2}) = 3. There is a surplus of resource 2. One reduced matrix
(in which both players drop half of the units of resource 2 they
had) is

Bx� ¼
1 0

0:5 1:5
1 0

0
B@

1
CA;

and vx� ðf1gÞ ¼ 1; vx� ðf2gÞ ¼ 0; vðf1;2gÞ ¼ 3. Therefore,
CoreðA;B; cÞˆCoreðA;Bx� ; cÞ.

Unfortunately, not all EOwen allocations are core allocations.
However, it is not always possible to find allocations that avoid
the unfairness drawback of the Owen set mentioned in this paper
and remain in the core of the original game at the same time.
Therefore, one has to look for some compromise between null-
payoff to absolutely necessary players and un-stability. The follow-
ing example illustrates the above statements.

Example 4. Consider the LP process (A,B,c) with the following
data,

A ¼
1 0
1 1
0 1

0
B@

1
CA; B ¼

1 0 0
0 1 0
0 0 1

0
B@

1
CA; c ¼

1
1

� �
:

The characteristic function of the associated game is v({1,2}) =
v({2,3}) = v({1,2,3}) = 1, and zero for any other coalition. Therefore,
the core of this game consists of the singleton {(0,1,0)}. Note as well
that without the resources of players 1 and 3, player 2 gets nothing,
but it is not possible to give a positive payoff to players 1 and 3 with
a core allocation.

Let us calculate the EOwen set for this example. One can see that
the extreme optimal production plans are x1 = (1,0) and x2 = (0,1),
and that BðA;B; x1Þ and BðA;B; x2Þ consist only of one matrix each
(named B1 and B2, respectively). B1 has a diagonal equal to (1,1,0)
and B2 has a diagonal equal to (0,1,1). All non-diagonal entries are
null for both matrices. It is easy to see that Omin(A,B1,c) is the union
over t1 P 1 and t2 P 0 of the convex hulls of {(1,0, t1), (0,1, t2)}, and
that Omin(A,B2,c) is the union over t1 P 1 and t2 P 0 of the convex
hulls of {(t1,0,1), (t2,1,0)}. Therefore, Owen(A,B1,c) is the convex
hull of {(1,0,0), (0,1,0)} and Owen(A,B2,c) is the convex hull of
{(0,0,1), (0,1,0)}. For every non-extreme optimal solution
xa = (a,1 � a) ða 2 ð0;1ÞÞ;BðA;B; xaÞ consists only of one matrix Ba,
in which the diagonal is (a,1,1 � a), and the rest is zero. The
corresponding Omin(A,Ba,c) is the convex hull of {(0,1,0), (1,0,1)},
and therefore the Owen set of the corresponding reduced LP
process is {(0,1,0), (a,0,1 � a)}. Therefore, EOwen(A,B,c) is the
convex hull of {(1,0,0), (0,1,0), (0,0,1)} (all players can obtain a
positive payoff from allocations in this set).

To summarize, the Owen set, the EOwen set and the core of the
original game have a relationship as shown in Fig. 1.

5. Conclusions

In this work we have introduced the EOwen set, a new solution
rule on the class of linear production processes which overcomes
certain drawbacks of the well-known Owen set, in the sense that
one can always find an allocation that gives a strictly positive pay-
off to players whose resources are needed for (at least) one optimal
production plan. Some examples in the paper show that Owen allo-
cations do not satisfy this property.

EOwen is defined as the union, over all possible optimal produc-
tion plans and all possible reduced matrices, of the Owen sets over
the corresponding reduced LP processes, in which players get rid of
the leftovers in their resources according to a reduced matrix. Sev-
eral theoretical properties and an axiomatic characterization of
this new solution rule are given. By means of an example we also
prove that, in general, it is not possible to find allocations that give
non-null payoffs to players that are necessary in order to achieve
the optimal value of v(N) by restricting to the core.

We note that two types of players have been involved in this pa-
per: group T1, consisting of players such that some of the resources
they own are needed for (at least) one optimal production plan;
and group T2, consisting of players whose resources are never
completely used in any of the optimal production plans. Theorem
1 ensures that players in T1 can always find an allocation in EOwen
that gives them a strictly positive payoff. Examples have shown
that players in T2 may receive only zero payoffs from Owen alloca-
tions. Players in both T1 and T2 are of special interest, since they
receive strictly positive payoffs from EOwen allocations, and may
only receive zero payoffs from Owen allocations (see for instance
Examples 1 and 2).

Further research on this topic will focus on methods to find allo-
cations with particular extra properties in the EOwen set, as well as
efficient algorithms for obtaining them.
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